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Quantum magnetotransport in tilted magnetic fields: 
exact results for parabolic wells 
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6, Czechoslovakia 

Received 23 April 1990 

Abstract. The energy level structure of a quasi-two-dimensional electron system in a para- 
bolic quantum well with the magnetic field tilted with respect to the sample plane was 
investigated. Basedon this model and on thelinear response theory the analyticalexpressions 
for the magnetoconductivity tensor were derived. Owing to the anisotropy induced by the 
tilted field, two diagonal components of conductivity are no longer equivalent. In high- 
mobility samples, precisely quantized Hall plateau develop in the off-diagonal component 
of conductivity regardless of field orientation. 

1. Introduction 

The magnetotransport properties of the quasi-two-dimensional electron systems con- 
fined in a narrow quantum well have attracted attention for many years. The main 
attention has been paid to the special configuration with the magnetic field perpendicular 
to the confinement plane. In this case the electron motion can be separated into an 
electric contribution governed by the confining potential and a magnetic contribution 
leading to the formation of Landau levels. The separation of variables in the one-electron 
Hamiltonian of the system makes it possible to describe the electronic transport in terms 
of a two-dimensional ( 2 ~ )  gas, i.e. to neglect the transverse motion completely. For any 
other configuration of the magnetic field this separation is in general not possible and 
the electron energy structure is more complicated. A review of work devoted to this 
problem up to 1980 was given in [ 11. Two different theoretical approaches have appeared. 
First, perturbation theory and numerical methods may be applied in the case of realistic 
models of quantum wells and electron energy dispersion laws. Then the experimental 
data can be interpreted semiquantitatively for a narrow range of parameters. The 
second choice is to investigate simple, analytically solvable models which can explain 
qualitatively the gross features of the data obtained for a broad spectrum of various 
experimental arrangements. An important step in this direction was made by Maan [2] 
and Merlin [3] who found analytically the subband structure for the case of electrons in 
a magnetic field of arbitrary orientation and for parabolic quantum wells. The aim of 
this publication is to extend their work and also to derive analytic expressions for 
components of the conductivity tensor for the same model. 
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2. General theory 

A system of non-interacting electrons which are mobile in the x-y plane and confined in 
the z direction is considered. A uniform magnetic field B is applied to the system at an 
arbitrary angle with respect to z .  The corresponding one-electron Hamiltonian has the 
form 

H = (1/2m)[p - (e/c)AI2 + V(r)  (1) 
where e and m are the electron charge and mass, respectively, c is the velocity of light 
andA is the vector potential (B  = curl A). Both the electron confinement and the elastic 
scattering of electrons by impurities are described by the potential V ( r ) .  

Let us assume that an electric current Z is linearly related to the applied electric field 
E through Ohm’s law 

Z = u E  (2) 
where U is the conductivity tensor. 

Under the above assumptions the components of the conductivity tensor are given 
by 

where i, j stand for x ,  y ;  p(q)  is the equilibrium Fermi-Dirac distribution function and 
U&, 0) denotes components of the conductivity tensor at temperature T = 0 and p is 
the Fermi energy. 

A suitable form for the general expression of zero-temperature conductivity was 
derived in [4] based on the linear response theory. The diagonal components can be 
written as 

U,! = nhe’ Tr[u,S(p - H)u,S(,u - H)] (4) 

and the non-diagonal components read 

U,, = (e2 /?)  T r [ W  - H)(r ,u ,  - r p J 1  
+ ih(e2/2) Tr[u,G+(p)u,S(p - H )  - u,S(p - H)u,G-(p)] 

S(p - H )  = -(1/2ni)[G+(p) - G-(p)] 

( 5 )  

(6) 

(7) 

where the Green functions are defined by 

G + ( p )  = ( p  - H -+ 

and the velocity operators are given by the commutation relations 

U, = (”’ HI = (l/”P, - (e/c)A,I 
where rr stands for x and y.  

Note that the form of or, given by equation (5) involves only electrons with energy 
equal to the Fermi energy p. The first term in (5) is closely related to the magnetic 
moment of the system: 

and is equal to ec aM,/ap. This expression is very sensitive to the compensation between 
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the bulk diamagnetic currents and the edge currents in the sample. Replacing this term 
by the less sensitive expression ec dN/dB,, as discussed for example in [ 5 ] ,  we can avoid 
this problem and the standard model of the 2~ gas may be used with the influence of 
edges on the electron structure completely neglected. Thus, the final form of ai, used 
throughout this paper is 

ai; = ec dN/dB,  + ih(e2/2) Tr[viC+(p)ujS(p - H )  - v J ( p  - H ) v j G - ( p ) ]  (9) 

where the number N of electrons is given by 

3. Level structure in a parabolic well 

In the following we shall use the representation with the basis formed by eigenstates I a) 
of the HamiltonianHo which describes afree electron in the magnetic fields = (0, By,  B,) 
and in a parabolic potential well V ( z )  = 4mQ2z2. This model was investigated previously 
by Maan [2] and Merlin [3]; here we use a slightly different notation. The choice of the 
vector potential gauge is close to that in Maan's work: A = (-B,y + Byz,  0,O) = B( -y 
cos Q, + z sin Q,, 0,O) where is the angle between the z axis and the direction of the 
magnetic field B .  The Schrodinger equation corresponding to this Hamiltonian has the 
form 

{ (1 /2m)[px  - (e/c)(B,z - ~ , y ) ] ~  + (1/2m)p; + (1/2m)pt + ( w z s ~ ~ z ~ ) / ~ } Y  = E\V. 

The momentum component p x  is a constant of motion and we can therefore write Y = 
exp(ikx) u(y, z ) .  Equation (11) represents two coupled harmonic oscillators and it can 
be diagonalized by a rotation y ,  = y cos /3 + z sin /3, z1 = -y sin /3 + z cos /3 with the 
angle of rotation /3 given by 

(11) 

tan 2/3 = -(wz sin 2q) / (wz  cos 2 ~ ,  - Q2)  (12) 

where 0, = I e lB/mc is the cyclotron frequency. 
The eigenenergies become 

E,, = hw,(n  + 4) + hw2(m + 4) 

w1.2 = {+[wf + s 2 2  +- (w:  + Q4 - 2wfs22 cos 2Q,)'/2]}'/*. 

nm = 0 , l .  . . (13) 

with eigenfrequencies w1 and w 2  determined by 

(14) 

The frequency w 1  corresponds to the harmonic motion of an electron along they , axis, 
and w 2  to the motion along the z1 axis. The eigenfunctions 1 a) of equation (11) can 
be denoted by the good quantum numbers la) = Inmk), the eigenenergies E,, 
are degenerate in the quantum number k. The degeneracy of each level is equal to 
I e IB,/hc, i.e. the filling factor is determined only by the field component perpendicular 
to the confinement plane. 
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Figure 1. Magnetic field dependence of the 
eigenfrequencies of the hybrid magnetoelectric 
modes: - - -, q = 0"; -, q = 22.5". 
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Figure 2. Eigenergies against magnetic field fan 
diagram corresponding to q = 22.5": -, levels 
m = 0 , n  = 0,1,2,3;--- ,  levelsm = 1, n = O,l,  
2.3. 
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The magnetic field dependences of the eigenfrequencies wl, w 2  and of several 
selected eigenenergies are shown in figures 1 and 2. For small magnetic fields, w1 + w, 
cos cp and w 2  + S2. Thus w1 corresponds to the cyclotron motion caused by z component 
of the magnetic field and w2 to the harmonic motion due to the parabolic well. In the 
high-field limit the roles of w1 and w 2  are reversed and w1 + S2 cos rp, w 2  + w,. 
The hybrid magnetoelectric modes are formed for medium fields w, - S2. The 
eigenfrequency w1 varies from w, for rp = 0" to 0 for cp = 90", and w 2  goes from S2 to 
(Q2 + w:)'/* in the same range of angles. 

In disorderedsystems the energy levels will have a finite width. We assume the 
case of randomly distributed zero-range impurities. Then the configurational averaging 
procedure for the Green functions yields the homogeneous effective medium described 
by a self-energy 2 = A - i r .  The resulting averaged resolvent is diagonal in the a 
representation and we can define its real and imaginary parts by 

where 
( @ I  G +  ( v )  I a ' )  = [Rfl,(v) + iF,m(v>Idaa' (15) 

~ ~ ~ ( 7 )  = -r/(x2 + r2) 

The number of electrons for the system with broadened levels can be written as 

R n m ( v )  = X/(X' + r2) X = 7 - E,, - A(7).  
(16) 

If we consider a constant number N of electrons, this equation implicitly defines the 
Fermi energy ,u as a function of magnetic field B and of an angle cp. 
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4. Conductivity tensor 

The configurationally averaged conductivity involves the quantity (GoG). For our zero- 
range potentials we shall assume that (GuG) = (G)u(G) and then only the averaged 
resolvent introduced in the previous paragraph enters the expression for conductivity 
components. 

In addition to the resolvents, the velocity components U ,  and uy appear in equations 
(4) and (9). Their matrix elements in the a representation read 

(ai U, 1 a’) = -0, (18) + cp)(a(yl - Y O  1 a’) + w ,  sin@ + cp)(a/zl - zo I a’) 

where yo = (hk cos P)/(mwc cos c p )  and zo = - (hk sin @)/(muc cos c p )  are the centres 
of cyclotron motion in the y, and z1 directions, respectively. In (18) and (19) we 
took into account the fact that I a) are defined as functions of variables y l  and z1 and 
transformed U, and uy to the same coordinate system. Using these expressions and 
identities (not presented here) relating the angles P and cp to the frequencies wl, w2,  S2 
and w,, we arrive, after some manipulation, at the formulae 

In the above expressions the quantities 

are formally equal to the transverse magnetoconductivities of two 2D systems. The 
transport in the x-yl plane is described by a]; a2 corresponds to the electron motion in 
thex-zl plane. In accord with equations (20) and (21) the conductivities U,, and aYy are 
the weighted combinations of u1 and a2. Note that in general a,, = ayy. An exception is 
the case cp -+ 0 when o y y 4  a,,-+ a1 for w, -4 S2 and oYy --.) U,,-+ u2 for w, % 52. 

The evaluation of uXy and ay, from equation (9) is complicated by terms containing 
the real parts of G+ and G-. We can avoid this difficulty using the identity 

t(RnmFn+lm - Rn+lmFnm) = -(hU1/2r)FnmFn+lrn (24) 

and a similar expression containing w 2  instead of wl. Then the off-diagonal components 
of conductivity can be written as 

uXy = -ayx = ecaN/aB,  - w1z(w2/Q)[(w: - Q2) / (w:  - w;)]al 

+ w2+1/52)[(0: - Q 2 ) / ( 4  - w:)I2 (25) 

where z = h/2r denotes the relaxation time. The number Nof electrons is given by (17) 
and its derivative with respect to B, is evaluated assuming that pis a constant. The terms 
containing u1 and o2 have an analogy in the quasiclassical description of the system. The 



8342 L Smrc'ka 

expression ec aN/a B, has no quasiclassical analogy and plays an important role in the 
dissipationless electron transport in the quantum Hall regime. 

The two conductivities a1 and o2 can be given a form more appropriate for com- 
parison with previous results and allowing deeper physical insight: 

1 
(71 = - e2 hw1h02 (-:) 2 [wlt(rz  + i ) F n m  + R,,] 

h hQ nm 1 + W I T  

1 
0 2  = - e2 hw1hw2 (-i) [ w 2 z ( m  + 4)Fnm + R,,,,,]. 

h hQ nm 1 + 0 2 ~  

For wlz > 1 and w 2 t  > 1 the terms containing F,, dominate and oscillations of con- 
ductivities are determined by oscillations of the density of states. The positions of 
maxima coincide with the energy levels but their amplitudes are modified by different 
prefactors for a,  and a2, The structure of equations (26) and (27) reminds one of the 
well known Drude-Zener formulae; in fact, equations (26) and (27) reduce to the 
Drude-Zener formulae in the quasiclassical limit when oscillatory behaviour can be 
neglected. 

The assumptions w,z  + 1 and w2z + 1 lead to the expressions 

( 3 e2 w1 
a2 = --x2 (m + 4) -- F,, 

h Q nm 

similar to those obtained in the Ando [6] model of magnetoconductivity in 2~ systems. 
They are often used for interpretation of experimental data together with a semiempirical 
expression 

(-l /n)Fn,, ,  = (bcTi)-'12 exp[(p - Enm)/To]2 (30) 

where 

and zo is the relaxation time at zero magnetic field (see, e.g., [l]). 

5. Simple model calculation 

Usually a,, and oxy are measured as functions of B for several selected angles, using the 
samples with a fixed number of carriers [7]. No attempt is made here to fit our results to 
any available experimental data. Instead we use a very simple model to illustrate the 
general features of the magnetic field and angle dependence of conductivity components. 
We evaluate them in the weak-scattering limit r kBT introduced in [8]. The tem- 
perature-dependent conductivity components are calculated from equation (3) and 
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Figure 3. Magnetoconductivity components as 
functions of E/hQ for q~ ranging from 0" for the 
lowest row to 25" for the top row in steps of 5". 
E/hQ varies from 0 to 3.5 on the horizontal axis 
of each window. The case of degenerate levels 
w, = 51 is shown: kBT = 0.04hQ. 

Figure 4. Magnetoconductivity components as 
functions of Elfin presented for a more general 
level structure corresponding to CO, = 0.7Q. The 
other parameters are the same as in figure 3 .  

subsequently replaced by the lowest-order terms of their power expansion with respect 
to r / k B T .  In this approximation, 

e 2 w l  r 1 
cosh2 (hp ., ) 

0 2  =--- Z ( m + t >  h C2 2kBTnm 

aN e* 
ec - = - +[l - tanh(ipnm)] 

aBz h nm 

(33) 

(34) 

where prim = (Ef lm - ,u)/kgT. Using these expressions, a,,, ayy and oxy were evaluated 
and shown in figures 3 and 4 as functions of p/hw, for angles q ranging from 0 to 25" in 
steps of 5". The lowest row corresponds to q = 0" and the top row to q = 25". Two sets 
of parameters were employed. First, we considered the special case of degenerate levels 
w, = Q for ~1 = 0". Removal of the degeneracy by tilting the magnetic field is clearly 
seen in figure 3. It manifests itself as a broadening of degenerate levels for small angles 
and their splitting for somewhat larger angles. For large angles the states which originated 
in different degenerate levels overlap. The difference between a,, and ayy is observable 
but small. This is partly due to the way of presenting the curves which neglects their 
absolute magnitudes. The oxy curves exhibit Hall plateaux whenever a,, and ay? reach 
zero. Figure 4 presents a more general case a, = 0.7Q to demonstrate the sensitivity of 
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conductivity to the magnetic field magnitude. The curves for rp = 0" differ substantially 
from those in figure 3 and their variation as functions of rp is less pronounced. A 
systematic shift of peak positions towards the lowest energies with increasing rp is mainly 
due to w I  which is close to 0, cos Q, while w 2  is less sensitive to the variation in rp. 

6. Conclusions 

On the basis of the linear response theory we have derived the general formulae for the 
magnetoconductivity tensor of a quasi-2~ electron system in the presence of a tilted 
magnetic field assuming elastic scattering of independent electrons. 

For the parabolic confining potential, two hybrid magnetoelectric modes develop in 
the case of a tilted field instead of purely electric and magnetic contributions to the 
electron motion known for systems with a perpendicular magnetic field arrangement. A 
2D conductivity formula can be given for each mode and the resulting conductivity is a 
combination of two 2~ conductivities. 

The oscillations of magnetoconductivity have maxima at the new hybrid level posi- 
tions and their amplitudes are modified by prefactors strongly dependent on the field 
angle and strength. Two diagonal components of conductivity, a,, and ay,,, are not 
equivalent and a,, = -ayx exhibits precisely quantized Hall plateaux e2/h for an arbitrary 
magnetic field orientation. 
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